NASSP Master's Project Proposal: Testing Modified Gravity with DECaLS Weak Lensing and WISE Galaxy Cross-Correlations

1. Primary supervisor: Prof. Amare Abebe

2. Institution of supervisor: Centre for Space Research, North-West University, Potchefstroom, South Africa

3. Co-supervisor: Dr. Ayodeji Ibitoye

4. Institution of co-supervisor: Centre for Space Research, North-West University, Potchefstroom, South Africa

5. Contact details: amare.abebe@nwu.ac.za, ayodeji.ibitoye@nwu.ac.za

While the accelerated expansion is accommodated within General Relativity through the cosmological constant (Λ), its microscopic origin remains unknown. This motivates tests of modified gravity theories (e.g., f(R), f(T), f(Q)) as alternatives to the Λ CDM paradigm. These theories predict distinct signatures in the growth of large-scale structure, which can be probed by cross-correlating weak gravitational lensing maps (DECaLS) and galaxy density fields (WISE). The Dark Energy Camera Legacy Survey (DECaLS) provides high-resolution cosmic shear maps, while the Wide-field Infrared Survey Explorer (WISE) offers a dust-insensitive galaxy catalog tracing the matter distribution. This synergy enables robust tests of GR deviations while mitigating systematics like photometric redshift errors.

The Master's student recruited will:

- Process DECaLS weak lensing catalogs to generate convergence (κ) maps and WISE galaxy overdensity (δ_q) maps in tomographic redshift bins.
- Compute the cross-correlation $\langle \kappa \delta_g \rangle$ and compare it to predictions from Λ CDM and MG theories (e.g., f(R)'s f_{R0} , f(Q)/f(T) coupling parameters).
- Implement a Markov Chain Monte Carlo (MCMC) pipeline to constrain MG parameters, using mock data from cosmological simulations (e.g., *FLAMINGO* for MGmodified N-body simulations or *FLASK* for fast log-normal mocks) to validate the pipeline. If needed, the student may explore alternative covariance estimation methods (e.g., jackknife resampling or analytical covariance) for cross-validation.
- Model scale-dependent growth rates and halo occupation distributions (HODs) of WISE galaxies to disentangle astrophysical and gravitational effects.

 \bullet Compare Bayesian evidence ratios to assess whether the data favor $\Lambda {\rm CDM}$ or MG scenarios.

This project will produce:

- First constraints on f(Q) and f(T) gravity using DECaLS-WISE cross-correlations.
- Improved bounds on f(R) gravity (e.g., $|f_{R0}|$).
- A peer-reviewed publication on MG tests with optical-infrared survey synergies.

Requirements for the student:

- Basic familiarity with Python (for data processing and statistical analysis).
- Introductory knowledge of cosmology (e.g., structure formation, dark energy).
- Interest in learning numerical methods (e.g., MCMC, HOD modeling).

Prof. Amare Abebe specializes in modified gravity and dark energy phenomenology. Dr. Ayodeji Ibitoye has expertise in large-scale structure analysis and cosmological simulations. Interested students are encouraged to contact the supervisors for further details or informal discussions. Relevant literature (e.g., DECaLS/WISE data papers, MG theory reviews) will be provided upon request.